skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Ruoming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. Machine unlearning (MU) aims to remove the influence of specific data points from trained models, enhancing compliance with privacy regulations. However, the vulnerability of basic MU models to malicious unlearning requests in adversarial learning environments has been largely overlooked. Existing adversarial MU attacks suffer from three key limitations: inflexibility due to pre-defined attack targets, inefficiency in handling multiple attack requests, and instability caused by non-convex loss functions. To address these challenges, we propose a Flexible, Efficient, and Stable Attack (DDPA). First, leveraging Carathéodory's theorem, we introduce a convex polyhedral approximation to identify points in the loss landscape where convexity approximately holds, ensuring stable attack performance. Second, inspired by simplex theory and John's theorem, we develop a regular simplex detection technique that maximizes coverage over the parameter space, improving attack flexibility and efficiency. We theoretically derive the proportion of the effective parameter space occupied by the constructed simplex. We evaluate the attack success rate of our DDPA method on real datasets against state-of-the-art machine unlearning attack methods. Our source code is available at https://github.com/zzz0134/DDPA. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  3. Free, publicly-accessible full text available December 2, 2025
  4. As a promising paradigm to collaboratively train models with decentralized data, Federated Learning (FL) can be exploited to fine-tune Large Language Models (LLMs). While LLMs correspond to huge size, the scale of the training data significantly increases, which leads to tremendous amounts of computation and communication costs. The training data is generally non-Independent and Identically Distributed (non-IID), which requires adaptive data processing within each device. Although Low-Rank Adaptation (LoRA) can significantly reduce the scale of parameters to update in the fine-tuning process, it still takes unaffordable time to transfer the low-rank parameters of all the layers in LLMs. In this paper, we propose a Fisher Information-based Efficient Curriculum Federated Learning framework (FibecFed) with two novel methods, i.e., adaptive federated curriculum learning and efficient sparse parameter update. First, we propose a fisher information-based method to adaptively sample data within each device to improve the effectiveness of the FL fine-tuning process. Second, we dynamically select the proper layers for global aggregation and sparse parameters for local update with LoRA so as to improve the efficiency of the FL fine-tuning process. Extensive experimental results based on 10 datasets demonstrate that FibecFed yields excellent performance (up to 45.35% in terms of accuracy) and superb fine-tuning speed (up to 98.61% faster) compared with 17 baseline approaches). 
    more » « less
    Free, publicly-accessible full text available November 16, 2025
  5. We consider the problem of constructing embeddings of large attributed graphs and supporting multiple downstream learning tasks. We develop a graph embedding method, which is based on extending deep metric and unbiased contrastive learning techniques to 1) work with attributed graphs, 2) enabling a mini-batch based approach, and 3) achieving scalability. Based on a multi-class tuplet loss function, we present two algorithms -- DMT for semi-supervised learning and DMAT-i for the unsupervised case. Analyzing our methods, we provide a generalization bound for the downstream node classification task and for the first time relate tuplet loss to contrastive learning. Through extensive experiments, we show high scalability of representation construction, and in applying the method for three downstream tasks (node clustering, node classification, and link prediction) better consistency over any single existing method. 
    more » « less
  6. BackgroundIn 2023, the United States experienced its highest- recorded number of suicides, exceeding 50,000 deaths. In the realm of psychiatric disorders, major depressive disorder stands out as the most common issue, affecting 15% to 17% of the population and carrying a notable suicide risk of approximately 15%. However, not everyone with depression has suicidal thoughts. While “suicidal depression” is not a clinical diagnosis, it may be observed in daily life, emphasizing the need for awareness. ObjectiveThis study aims to examine the dynamics, emotional tones, and topics discussed in posts within the r/Depression subreddit, with a specific focus on users who had also engaged in the r/SuicideWatch community. The objective was to use natural language processing techniques and models to better understand the complexities of depression among users with potential suicide ideation, with the goal of improving intervention and prevention strategies for suicide. MethodsArchived posts were extracted from the r/Depression and r/SuicideWatch Reddit communities in English spanning from 2019 to 2022, resulting in a final data set of over 150,000 posts contributed by approximately 25,000 unique overlapping users. A broad and comprehensive mix of methods was conducted on these posts, including trend and survival analysis, to explore the dynamic of users in the 2 subreddits. The BERT family of models extracted features from data for sentiment and thematic analysis. ResultsOn August 16, 2020, the post count in r/SuicideWatch surpassed that of r/Depression. The transition from r/Depression to r/SuicideWatch in 2020 was the shortest, lasting only 26 days. Sadness emerged as the most prevalent emotion among overlapping users in the r/Depression community. In addition, physical activity changes, negative self-view, and suicidal thoughts were identified as the most common depression symptoms, all showing strong positive correlations with the emotion tone of disappointment. Furthermore, the topic “struggles with depression and motivation in school and work” (12%) emerged as the most discussed topic aside from suicidal thoughts, categorizing users based on their inclination toward suicide ideation. ConclusionsOur study underscores the effectiveness of using natural language processing techniques to explore language markers and patterns associated with mental health challenges in online communities like r/Depression and r/SuicideWatch. These insights offer novel perspectives distinct from previous research. In the future, there will be potential for further refinement and optimization of machine classifications using these techniques, which could lead to more effective intervention and prevention strategies. 
    more » « less
  7. Personalized recommender systems play a crucial role in modern society, especially in e-commerce, news, and ads areas. Correctly evaluating and comparing candidate recommendation models is as essential as constructing ones. The common offline evaluation strategy is holding out some user-interacted items from training data and evaluating the performance of recommendation models based on how many items they can retrieve. Specifically, for any hold-out item or so-called target item for a user, the recommendation models try to predict the probability that the user would interact with the item and rank it among overall items, which is calledglobal evaluation. Intuitively, a good recommendation model would assign high probabilities to such hold-out/target items. Based on the specific ranks, some metrics likeRecall@KandNDCG@Kcan be calculated to further quantify the quality of the recommender model. Instead of ranking the target items among all items, Koren first proposed to rank them among a smallsampled set of items, then quantified the performance of the models, which is calledsampling evaluation. Ever since then, there has been a large amount of work adopting sampling evaluation due to its efficiency and frugality. In recent work, Rendle and Krichene argued that the sampling evaluation is “inconsistent” with respect to a global evaluation in terms of offline top-Kmetrics. In this work, we first investigate the “inconsistent” phenomenon by taking a glance at the connections between sampling evaluation and global evaluation. We reveal the approximately linear relationship between sampling with respect to its global counterpart in terms of the top-KRecall metric. Second, we propose a new statistical perspective of the sampling evaluation—to estimate the global rank distribution of the entire population. After the estimated rank distribution is obtained, the approximation of the global metric can be further derived. Third, we extend the work of Krichene and Rendle, directly optimizing the error with ground truth, providing not only a comprehensive empirical study but also a rigorous theoretical understanding of the proposed metric estimators. To address the “blind spot” issue, where accurately estimating metrics for small top-Kvalues in sampling evaluation is challenging, we propose a novel adaptive sampling method that generalizes the expectation-maximization algorithm to this setting. Last but not least, we also study the user sampling evaluation effect. This series of works outlines a clear roadmap for sampling evaluation and establishes a foundational theoretical framework. Extensive empirical studies validate the reliability of the sampling methods presented. 
    more » « less
  8. Vector search has drawn a rapid increase of interest in the research community due to its application in novel AI applications. Maximizing its performance is essential for many tasks but remains preliminary understood. In this work, we investigate the root causes of the scalability bottleneck of using intra-query parallelism to speedup the state-of-the-art graph-based vector search systems on multi-core architectures. Our in-depth analysis reveals several scalability challenges from both system and algorithm perspectives. Based on the insights, we propose iQAN, a parallel search algorithm with a set of optimizations that boost convergence, avoid redundant computations, and mitigate synchronization overhead. Our evaluation results on a wide range of real-world datasets show that iQAN achieves up to 37.7× and 76.6× lower latency than state-of-the-art sequential baselines on datasets ranging from a million to a hundred million datasets. We also show that iQAN achieves outstanding scalability as the graph size or the accuracy target increases, allowing it to outperform the state-of-the-art baseline on two billion-scale datasets by up to 16.0× with up to 64 cores. 
    more » « less